Skip to main content

REALISTIC AND NON-REALISTIC STRINGS


## A 'realistic', 'non-elastic' string, which responses to any
## bending and has stifness. This script takes in the previous
## and the present profiles and iterates to find
## the profile in the next time step. The ratio 'r' is not 1
## like in the 'non-realistic' string since the speed of the wave
## always less than the speed of the string it should be less than 1
## for best and most stable solution
##constants
dx=1e-2 ## Spatial increment (m)
L=2 ## Length of the string (m)
M=L/dx ## Dimensionless partition
E=1e-4 ## Dimensionless stiffnes
function ynext=propagate_stiff(ynow,yprev,r)
## Quick and dirty way to fix boundary conditions -- for each step
## they are the same as the previous step.
ynext=ynow;
ynow(1)=ynow(2)=0;
##Entering the loop
for i=3:length(ynow)-1
## boundary condition
ynow(length(ynow)-1)=ynow(length(ynow)-2)=0;
## Divide the ynext with many terms into three parts for easiness
ynext(i)=(2−(2*r^2)−(6*E*(r^2)*(M^2)))*ynow(i)−yprev(i);
ynext(i)=ynext(i)+(r^2)*(1+4*E*(M^2))*(ynow(i+1)+ynow(i−1));
ynext(i)=ynext(i)-E*(r^2)*(M^2)*(ynow(i+2)+ynow(i−2));
endfor
endfunction

Comments

Popular posts from this blog

SIMPLE AND MODIFIED EULER METHOD

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x dery(1)=0;## 1st entry of dery n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n+1); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations x(1)=1; ## beginnig of the interval [1,2] ymod(1)=1; ## inital value for modified y. ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints of the interval h in x-axis. derymod=[]; ## modified derivatives of ymod

TOTAL DISPLACEMENT OF LOOPLESS RANDOM WALK

## A for good and evil as well as loopless ## total displacement function of random walk ## that takes in the step numbers as an ## argument and returns the displacement ## of the rnd walker.Note that the probabilities ## to turn rigth and left are equal but the left ## step is twice the rigth step. ## Usage : rw_uneven(N) function rw_uneven(N) rn=rand(N,1); ## If the element of a random vector r=-(rn<0.5); ## is smaller than 0.5, then return -1, li=find(r == 0); ## Else return 2(equal probability). r(li)=2; x=sum(r) ## total displacement endfunction