Skip to main content

PROPAGATION OF NON-UNIFORM STRING


## The string is made up of two different mass density strings
## seperated in the middle. Choose the right one to be ligther
## than the left. So, since velocity is inversely propotional
## to the mass density, than the rigth one is faster also.
## r1=c1*dt/dx and r2=c1*dt/dx
function ynext=propagate_two_parts(ynow,yprev,r1,r2)
## initiallization for, take y as previos one
ynext=ynow;
## we have two parts, hence two loops are needed
## the first part is between x=0 and
## let y(now)/2 for better visiulation.
## floor(x) returns the largest integer not greater than x
## length(x) determines the number of column
## or rows in matrix or vector
##I started the 'for' from x=0 but didn't work
##then started from x=1
## but in this case the
## string_two_parts didn't work
## let x0=i0=2
for i=2:floor(length(ynow)/2)
ynext(i) = 2*(1-r1^2)*ynow(i)-yprev(i)+r1^2*(ynow(i+1)+ynow(i-1));
endfor
## the second part is between x0=(L1+L2) /2 and L1+L2 where
## L1 and L2 are string lenghts respectively
## I started the 2nd for from N2steps
## and finished it by 'ynow' but it
## didn't work. So i tried the following
for i=floor(length(ynow)/2)+1:floor(length(ynow))-1
ynext(i) = 2*(1-r2^2)*ynow(i)-yprev(i)+r2^2*(ynow(i+1)+ynow(i-1));
endfor
endfunction

Comments

Popular posts from this blog

SIMPLE AND MODIFIED EULER METHOD

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x dery(1)=0;## 1st entry of dery n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n+1); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations x(1)=1; ## beginnig of the interval [1,2] ymod(1)=1; ## inital value for modified y. ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints of the interval h in x-axis. derymod=[]; ## modified derivatives of ymod

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root ## of the 8th degree Legendre Polynomial ## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35) ## where -1<=x<=1. ## for the smallest non negative root, we can ignore ## all the terms except the last two by truncated ## the function to be zero and find ## x=0.167 as the initial smallest non negative ## root. ##Constants and initializations x=[]; ## Empty array for the iterated x roots x(1)=0.16700000; ## Initial guess to begin the iteration for the ## smallest non-negative root. L8=[]; ## Empty array for the Legendre polynomial L8p=[]; ## Empty array for the derivative of the Legendre polynomial for i=1:100 ##The value of the function at x L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35); ##The value of the derivative of the function at x L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i)); x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration endfor ## For plot let's

PHYSICS MACHINE

Physics Machine  Ümit Alkuş  Abstract Physics machine is a software which does physics like a physicist. First, all the things human being has developed so far, for doing physics, will be available to this machine. Secondly, all the consistent theories, successful experiments, and published articles will be included into this machine in the form of traced and readable knowledge, in other words, this machine can read and understand these all. Finally, as the last target, this machine can observe the universe and physical events with the aim of creating theories and physical laws.  METU, Physics Department, 06800, Ankara, Turkey   Keywords: Artificial Intelligence, Machine Learning, Data Mining, Artificial Physicist   Introduction There are approximately millions of articles over physics, huge collection of very successful theories, and physics books. In the earth, no physicist could have attempted to read and understand these accumulations since it requires free infinite tim