Skip to main content

MINIMUM OF GAMMA FUNCTION

## This string finds the minimum of the Gamma function
## integral(x^(alpha-1)*exp(-x))dx) (x=[0,infinity])
## in the interval 0<alpha<4.
dx=1E-2; ## Increment in x
x=0:dx:100; ## x array
Gamma=[]; ## Empty Gamma function
alpha=0.00:dx:4.00; ## The independent variable of Gamma function
for i=1:length(alpha)
## Call the trapezoid function to
## calculate all entries of Gamma function
## corresponding to entries of alpha
f=x.^(alpha(i)-1).*exp(-x); ## integrand of Gamma function
Gamma(i)=trapezoid(x,f);
endfor
plot(alpha,Gamma);
title('Gamma values vs alpha');
legend('Gamma(alpha)');
xlabel('alpha');
ylabel('Gamma');
## The following 'for loop' finds the minimum value of Gamma
## and the corresponding alpha value.
minimum=Gamma(1);
for n=1:length(Gamma)
if(minimum>Gamma(n))
minimum=Gamma(n);
n; ## The array index where the minimum of Gamma is.
m=alpha(n); ## The alpha value corresponding to the min of Gamma
endif
endfor;
printf('Minimum of the Gamma Function in the interval 0<alpha<4 is %f\n for the alpha=%f\n' ,minimum,m)
print('-dpsc',MINGAMMA.ps');
save -text MINGAMMA.dat

Comments

Popular posts from this blog

SIMPLE AND MODIFIED EULER METHOD

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x dery(1)=0;## 1st entry of dery n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n+1); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations x(1)=1; ## beginnig of the interval [1,2] ymod(1)=1; ## inital value for modified y. ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints of the interval h in x-axis. derymod=[]; ## modified derivatives of ymod

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root ## of the 8th degree Legendre Polynomial ## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35) ## where -1<=x<=1. ## for the smallest non negative root, we can ignore ## all the terms except the last two by truncated ## the function to be zero and find ## x=0.167 as the initial smallest non negative ## root. ##Constants and initializations x=[]; ## Empty array for the iterated x roots x(1)=0.16700000; ## Initial guess to begin the iteration for the ## smallest non-negative root. L8=[]; ## Empty array for the Legendre polynomial L8p=[]; ## Empty array for the derivative of the Legendre polynomial for i=1:100 ##The value of the function at x L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35); ##The value of the derivative of the function at x L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i)); x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration endfor ## For plot let's