Skip to main content

BIO-SAVART LAW


/*A C code that returns the magnetic field at a mesh of points
*on the xy-plane (xp,yp) for a straight wire segment through which
*current passes. The total magnetic field used in this code
*has the form (cos(theta1)-cos(theha2))/(yp*r_mag)
*ignoring the constants permeability, pi and current I and
*taking them together as 1. Thus no need for trapezoid since
*the integral of Bio-Savart can be tractable!!!
*r_mag represents the distance between the dl segment and
*the point (xp,yp) where we will find the B*/
#include <stdio.h>
#include <math.h>
/*Global constant*/
#define L 3.0 /* length of the wire*/
double r_mag(double x, double xp, double yp) {
double rx;
rx=xp-x; /* x is any point on xprime*/
return sqrt(rx*rx+yp*yp);
}
main()
{ int i;
double xp,yp;
double B; /*the z component of mag-field that is total field.*/
FILE *fid;
fid=fopen("mag-field","w");
/*loop over xp and yp values*/
for (yp=-2.0;yp<=2.0;yp=yp+0.1)
for (xp=-1.5;xp<=1.5;xp=xp+0.1)
{ /* Form the function B*/
B=2*(xp-L/2)/(yp*r_mag(L/2,xp,yp));
fprintf(fid,"%10.6lf %10.6lf %10.6lf\n",xp,yp,B);
}
fclose(fid);
}

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD FOR HEAT FLOW

##Constants and initializations
a=5.67E-8; ## Stefan-Boltzman constant[Watt/meter^2Kelvin^4]
e=0.8; ## Rod surface emissivity [Dimensionless]
h=20; ## Heat transfer coefficient of air flow [W/m^2-K]
Tinf=Ts=25; ## Temperature of air and the walls of the close[Celcius]
D=0.1; ## Diameter of the rod[meter]
I2R=100; ## Electric power dissipated in rod (Ohmic Heat)[W]
T=[]; ## Temperature of the rod[*C]
T(1)=25; ## Initial guess of the temperature of the rod[*C]
Q=[]; ## Heat function [W]
Qp=[]; ## First derivative of Q wrt T [W/C*].
for i=1:100
Q(i)=pi*D*(h*(T(i)-Tinf)+e*a*(T(i)^4-Ts^4))-I2R;
Qp(i)=pi*D*(h+4*e*a*T(i)^3);
T(i+1)=T(i)-Q(i)/Qp(i); ## Newton-Rapson Method
endfor
printf('The steady state temperature is %f\n',T(i+1))
save -text HeatFlowTemp.dat
## The plot
t=1:100; ##temperature
for n=1:100
H(n)=pi*D*(h*(t(n)-Tinf)+e*a*(t(n)^4-Ts^4))-I2R;
endfor
plot(t,H)
xlabel('T(Celcius)');
ylabel('Q(Watt)');
legend('Q(T)');
title('Heat flow vs Temperatu…